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Abstract 

We study a solvable QCD-like toy theory, a generalization of the Nambu- 
Jona-Lasinio model, which implements chiral symmetries of light quarks 
and heavy quark symmetry. The chiral symmetric and chiral broken 
phases can be dynamically tuned. This implies a parity doubled heavy- 
light meson system, corresponding to a (O-, l-) multiplet and a (O+, l+) 
heavy spin multipiet. Consequently the mass difference of the two mul- 
tiplets is given by a Goldberger-Treiian relation and gA is found to be 
small. The Isgur-Wise function, c(w), the decay constant, fs, and other 
observablea are studied. 
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I. Introduction 

In recent years, QCD applied to systems containing a single very massive quark, where 
one can imagine the limit M + co to be a reasonable physical approximation, has 
been the subject of considerable attention (l-51. The pseudoscalar and vector mesons 
containing one very massive and one light quark become degenerate in the M -+ co 
limit, due to a heavy quark spin symmetry again valid to l/M. Moreover, Isgur and 
Wise (I] pointed out that transition amplitudes, such ss weak decays, involving heavy 
quarks are described by a flavor independent function of the invariant difference in 
4-velocities, E(v’ . u), and therefore a heavy quark spin-flavor symmetry, SU(2N,) 
exists, valid to order l/M. Georgi has given a useful field theoretic construction of 
this limit [5], and has studied the consequences and phenomenological applications of 
the theory, such as the computation of the QCD anomalous dimension which controls 
the perturbative evolution of <(d. V) with scale for v’. v < 1. 

For many purposes one must also implement the chiral symmetries of the light 
quarks, in addition to the heavy quark symmetry. The heavy quark (HQ) and chiral 
light quark (LQ) symmetries together control the interactions of heavy-light (HL) 
mesons with pions and K-mesons, etc. Several authors have written down model 
independent chiral Lagrangians which involve these symmetries at the meson level 
(6-121. A number of studies of the phenomenological applications of these chiral 
Lagrangians have been undertaken, such as the computation of the chiral log radiative 
corrections to [(d . v), [7] associated with N(3) x SU(3) breaking terms, the study 
of radiative and meson decays of heavy mesons (111, and chiral dynamics including 
the effects of excited heavy mesons [12]. 

The chiral Lagrangiau introduced by Wise [6] represents a straightforward imple- 
mentation of the heavy quark and light flavor symmetries in the nonlinear current 
form. In this form one need only identify the linear flavor symmetries, like isospin or 
SU(3), and the chiral effective Lagrangian, to leading order in the momentum expan- 
sion, is automatically determined, up to an unspecified axial vector coupling constant 
g,.t. This effmtive Lagrangian is then manifestly invariant under the usual global flavor 
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symmetries, and the full set of chiral transformations are local gauge-like transfor- 
mations which are functionals of the pions. The underlying chiral representations of 
the heavy mesons need never be specified. Model independent approaches are clearly 
the most reliable way in which to minimally implement the physical symmetries. 

We may wish, however, to go closer to the underlying chiral dynamics than the 
model independent approaches allow. We may pose additional questions within dy- 
namical models which can reveal additional physical consequences to the real world. 
For example, is there a more primitive chiml form of the Lagrangian in which the ex- 
plict chiral representations of the heavy mesons are identified? A related question in 
the broken phase is: what is the analogue of the Goldberger-Treiman relation in the 
heavy meson system, i.e., what receives mass from the chiral condensate’s mass gap? 
In the case of the nucleon-meson system we can similarly write the chiral Lagrangian 
in the nonlinear current form, never having to specify the precise chiral representa- 
tions of nucleons. However, if we ask for the linear chiral form we also know the 
answer: the left-handed (right-handed) nucleon is assigned to a (0, i), (( +, 0)) repre- 
sentation under SLr(2)s x SU(2)‘. Most of the nucleon mass arises from the chiral 
condensate, or the VEV of C which is ( .$, i). We know this because the Goldberger- 
Treiman relation yields the pion-nucleon coupling constant in terms of the nucleon 
msss gNNr = mN/fr, and GA X 1. 

In the case of heavy mesons, however, it is clear that the meson mass arises 
primarily from the mass of the heavy constituent quark, such ss the &quark, and the 
chiral mass gap is a perturbation. Our question then is related to the outcome of a 
gedanken experiment: what happens to the heavy-light meson spectrum if we could 
somehow restore the chiral symmetry, maintaining the other features of confining 
QCD? While the nucleon mass goes to zero in this gedanken limit, leaving degenerate 
(approximately) massless left- and right-handed states, the heavy meson masses must 
remain (approximately) unatfected. Yet, the explicit linear chiral symmetry SU(2)‘ x 
SU(2)s must somehow be realized in the heavy meson mass spectrum in this limit. 
This leads to the conclusion that the ground-state must become doubly degenerate 
with even and odd parity mesons Br and Bs respectively, and these must form the 
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SiY(2)L x SU(2)a representations in the linear combinations (BI &Bz)/& Therefore, 
the breaking of the chiral symmetry leads to a mass gap between these parity partners 
and associated pionic transitions between parity partners will occur (In Appendix 
B(ii) we give a brief schematic discussion of parity doubling). 

It is difficult to imagine that a simple potential model can capture this phe- 
nomenon. The chiral symmetry limit is relativistic, and the chiral symmetry breaking 
is a dynamical rearrangement of the vacuum. Thus, the naive picture of a heavy me- 
son as a boundstate of a heavy quark and a constituent quark will miss those aspects 
of the physics which involve the necessary mixing of the parity doubled states. This 
will show up in the present analysis in the meaning and quantitative estimate of ga, 
and the analogue to the Goldberger-Treiman relation. 

Thus, to better understand these issues it is interesting, if not essential, to study 
simple, solvable, strongly coupled toy field-theoretic models in which both heavy 
quark and chiral symmetries are present at the fundamental quark level, and the 
dynamics of chiral symmetry breaking is made explicit. We consider presently the 
simplest such scheme. We emphasize at the outset that this toy model is unrealistic 
and is intended only to convey the schematics of QCD chiral dynamics in heavy- 
light mesons (although we will brazenly attempt a fit to data). The simple model we 
consider is based upon a local gluonic current-current interaction Lagrangian: 

- $~TjTp~$iC~jy’~@j 

I i 

where the (i,j) sums extend over all of the fundamental fermion flavors, both heavy 
and light, and we sum over the octet color index A. We view eq.(l) as essentially a 
QCD-inspired generalization of the Nambu-Jona-Lasinio model. For small g eq.( 1) 
corresponds to the low-energy perturbative interaction generated by the exchange of 
a “massive gluon” of msss A/& We propose to study this model using the technique 
of the large-N expansion, or equivalently, the fermion bubble approximation, with a 
cut-off at A. The model is exactly solvable in leading order. 
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Solving the theory in the leading large-N approximation is equivalent to fsctoriz- 
ing eq.( 1) into auxiliary fields describing the composite pions and heavy-light mesons, 
at the scale A and integrating out the heavy and light quarks to generate the effective 
Lagrangian at a scale /J < A. The hadrons in our model, both light and heavy, appear 
as dynamically generated boundstates. In the light quark, meson sector we recover 
the chirsl quark model of Manohar and Georgi [13] (with gi = 1). In the heavy me- 
son sector we produce various boundstates of the heavy quark and the light quarks, 
and the full effective Lagrangian of these heavy meson boundstates coupled to light 
mesons is determined. The effective Lagrangian is manifestly heavy quark-pin and 
chirally symmetric. 

We will make certain further simplifying assumptions, keeping only terms in the 
renormalized effective Lagrangian that are - O(1) or - O(p ln(A/p)/A), while drop- 
ping subleading terms - O(p/A). This is a drastic approximation from the point 
of view of the quantitative application of the model, but adequate for capturing the 
schematic of the chiral dynamics. We emphasize that we have in mind, presently, 
a hierarchy of scales, p < A << M, where M is the heavy quark msss scale. The 
momentum-space loop integrals will extend from /J to the cut-off A. We view in the 
context of the model A to be a physical scale below which the theory is nonpertur- 
bative in g, but above which an effective softening of the point-like approximation 
due to the perturbative l/q* gluon propagator takes place. While it is tempting to 
identify A with - AQC~, we would hope that A N 1 GeV emerges from a fit to the 
physical quantities derived in the model. In fact, the simplest attempt at a fit to fs 
and fi yields A - 1.35 GeV, and most of the light sector observables are obtained 
within a factor of two. p is an infrared cut-off which we would like to identify with 
the scale of light constituent quark masses. 

In the unbroken chiral symmetry phase the model produces the necessary de- 
generate parity doubling of the threshold spectrum of heavy mesons. In addition 
to the usual pseudmalar and vector HL mesons (the l3 and B’ mesons which 
form a (O-, I-) heavy quark symmetry multiplet), there is necessarily a scalar and 
pseudovector HL meson boundstate generated, which is a consequence of the chiral 
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symmetry. This is identified with the s;’ = $- p-wave radially excited mesons (in 
the Dsystem this is distinct from the observed (Ds) states which are sf’ = i-, (see 
Ming-Lu etal. 1141). Unfortunately, these states have not been observed and will be 
fairly broad resonances, but their effects may ultimately be detectable [12]. Techni- 
cally, in the symmetric phase we must hold p fixed at a nonzero value to protect from 
infrared singularities. 

While the HQ symmetry maintains the degeneracy within the (O-, I-) and (O+, l+) 
multiplets, unbroken chiral symmetry implies the degeneracy of the two multiplets 
themselves. As we vary the model’s coupling parameter to dynamically induce the 
chiral symmetry breaking, the theory develops a mass gap. This leads to a calculable 
mass splitting, elevating the (O+, I+) HQ multiplet and depressing the (O-, l-). The 
mass gap between the groundstate mesons and the resonances is constant in the M + 
00 limit and is given essentially by N gji. This is the analogue of the Goldbeetger- 

Z’teiman relution of the theory, and is probably more general than our specific toy 
model result. Moreover, as a general result of the parity doubling, the axial vector 
coupling constant gA is not necessarily expected to be close to unity. In fact, ga tends 
to be small based upon our fit, r;: 0.32 (see Appendix B(ii); it occurs here as a term 
of order In(A/p)/A, which is subleading to 1). This is a prediction which is thus far 
consistent with the upper limit in processes like D’ + D + rr, though a measurement 
of the full D’ width is still lacking to date. In the limit of very low q* pion emission 
we can decouple the heavier parity doubling states to return to the effective chiral 
Lagrangian for the (O-, l-) groundstate mesons of ref.[6]. There remain in the low 
energy effective Lagrangian potentially important effects of the heavy resonances in 
chiral perturbation theory [12]. 

Thus, a key result we find is that the chiral mass gap, and hence an analogue 
Goldberger-Treiman relation, refers to the splitting between parity conjugate heavy 

meson multiplets in a heavy-light meson theory, i.e., heavy meson chiml theory is 

a parity doubled implementation of chimi symmetry. There are other issues of the 
applicability of the chiral theory and its consequences which the present analysis will 
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attempt to address. Though not entirely realistic, the model is completely solvable 
for various observables. je is determined in terms of the short distance cutoff on 
the theory and the Isgur-Wise function is computed. The Isgur-Wise function result 
in the present model involves issues of going beyond the chiral logs, which arise also 
in matching composite mesons onto &CD. We will discuss this issue which is related 
to consideration of reparameterization invariance (14-161. 

II. Toy Model Field Theory with Chiral and Heavy Quark Symmetry 

(i) The Light Quark Chiml Dynamics 

Let us write the effective Lagrangian in the light quark sector, including the 
current-urrent form of the light fermion interaction Lagrangian of eq.(l): 

L = F(i? - m,)* - -$Gyy$$J~J.$ 

For concreteness we will take $ = (u, d), XA are color matrices, and in the limit that 
the quark msss matrix rnr + 0, we have an exact chiral sum x SU(2)n invariant 
Lagrangian. This is a single gluon exchange potential, generated by a fake, mss- 
sive gluon of msss A/d. We treat the physics on scales q* < A* using eq.(2), in a 
fermion bubble approximation, imposing a W loop momentum cut-off of A. Well 
above the scale A we would imagine the potential to soften into a l/q* perturbative 
gluon exchange, hence A plays the role of a matching scale between strong infra-red 
physics and weak ultraviolet QCD. Finally, the “theory” in the light sector consists 
of integrating out the fermions down to an infrared scale p, keeping induced terms 
of order A*, and ln(A/p) in the unrenormalized Lagrangian (we will discard pertur- 
bative terms that are finite, thus subleading, in the infinite A limit as a simplifying 
approximation). This generates an effective Lagrangian of composite particles. This 
is our essential approximation to the infra-red strong coupling behavior of &CD, or 
the “brown muck” of heavy-light physics. Overall, this is certainly a drastic approxi- 
mation. Truncating on dim = 6 operators is, in a sense, a pure s-wave approximation 
to &CD, and cannot dynamically confine the quarks and discarding the subleading 
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terms will limit the quantitative reliability of the model (the model could easily be 
improved). The physical value of A is determined in principle by fitting to the derived 
phenomenological parameters. The theory will contain the dynamical chiral symme- 
try breaking, and will determine a chiral Lagrangian of the heavy-light system. 

Upon Fien rearrangement it is seen that the interaction Lagrangian of eq.(2) 
contains the Nambu-Jona-Lasinio model. The subsequent analysis is standard. We 
can factorize eq.(2) into a Yukawa theory with a static auxiliary field C = i(a+in47”) 
on the scale p N A and then integrate out the fermions to determine the effective 
Lagrangian at scales ~1 < A. The field C is 2 x 2 complex at this stage, which implies 
parity doubling of the ?r and the parity partner of u, the n is also present. This 
analysis is summarized in Appendix B. 

The light sector effective Lagrangian at scales p < A can be identified with a 
linear u-model: 

CL = 3($ -m9)111-~~LCr~~-~~~;RC~~~ 

+a(+%?%) - m~‘Tr(C$,) + n:Tk(m&, + h.c.) 

+x a(c!c,qc,) (3) 

C, describes the renormalized composite light mesons. We have written the renor- 
malized effective Lagrangian, so that j = g/a. Zr = (g2N/16a2) ln(A*/fi*) is the 
finite, induced wave-function renormalization constant of the C field. 

A (Tr C!C,)* term could be included in eq.(3), though it is subleading in N,, 
and for S’(2) x SLI(2) with (o, rr) real this is equivalent to the quartic term we have 
included. The theory can be tuned by choosing sufficiently large coupling g to develop 
a chiral symmetry breaking condensate, thus generating a constituent quark mass. 
The chiral symmetry breaking lifts of the isovector, O+ (Im(a)) states The Re(x) O- 
pion, becomes the Nambu-Goldstone mode. In QCD the residual LT(1) symmetry is 
broken by anomalies and the effects of instantons. This generates additional terms 
such as an extra ‘t Hooft determinant, det C + h.c. term, which elevates [m(o) = 7. 
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Any additional necessary Wess-Zumino terms should be incorporated as well. 

Since the light sector dynamics is not our principal concern in the subsequent 
analysis, we will henceforth assume that the fields (u, rf’) comprising C are real, so 
C henceforth contains only the O- s’ isotriplet and the real u isosinglet. Therefore, 
eq.(3) becomes a linear version of the chiral quark model ala Georgi, Manohar, and 
Holdom [14]. Nonetheless, we can dynamically put the model either in a symmetric 
phase, rnz > 0, by choosing g2N/4a2 < 1, or in a chiral symmetry breaking phase 
rnz < 0 with g2N/4a2 > 1. The critical bare coupling corresponds to rnz = 0 ss 
M + 0. For further discussion of the light quark sector see Appendix B. 

(ii) The Heavy-Light Quark Dynamics 

Now we focus on the dynamics of mesons containing one light and one heavy quark. 
The model produces one boundstate per channel in the fermion bubble approximation. 
We can conveniently solve the theory by factorizing the heavy-light (HL) interaction 
into auxiliary background interpolating fields with Yukawa couplings to heavy and 
light quark vertices. The original four-fermion interaction is recovered when the 
auxiliary fields are integrated out. Upon integrating out the quarks on scales A to 
p, the auxiliary fields acquire induced kinetic terms on the scale p and thus become 
dynamical heavy-light mesons (“B-mesons”). In this way we derive the effective 
Lagrangian for the HL mesons coupled to the dynamical pions. 

The heavy-light fermion sector interaction Lagrangian, together with the HQ 
kinetic term, involves the HL cross-term of eq.(l) and can be written as: 

JkL = ?&a - M)Q - $$Q &+ 

Here we may generally take Q = (t, b,c..) to be a multiplet of NH heavy quarks, 
and M the heavy quark mass matrix. We will presently consider, however, just a 
single heavy flavor in the following discussion. g should be viewed as the effective 
coupling at the scale A in both the light sector and the HL sector of our model. (In 
a more detailed discussion one might wish to distinguish the coupling constant in the 
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heavy-light effective action from that of the light-light action at A; we ignore this 
possibility in the present paper). 

Upon Fien-rearrangment of the interaction, again keeping only leading terms in 
l/No and writing in terms of color singlet densities, eq.(4) takes the form: 

&IL = qig - M)Q + $ (QWQ. - T”r5$iT;‘r5Q. 

-iQ”YphTYQca - ~Q”~pr5tiJYp~5Qa) (5) 

where i are the isospin indices, and a the heavy flavor indices. 

In the heavy quark limit we introduce a projection onto a heavy quark field with 
a well defined four-velocity v,. Presently we rewrite the full theory identically in 
terms of a single four-velocity sector, corresponding to the four velocity of the heavy 
constituent quark or equivalently the boundstate heavy mesons: 

Q 
1+# d 2 exp(-iMu . z)Q(z), (6) 

Note that (1 + #)&v/2 = Q,, i.e., the field Qu always carries an implicit factor of 
(1 + # )/2. The HQ kinetic term then takes the form: 

The Isgur-Wii flavor symmetry is just the group of SU(NH) rotations on Qt, and 
is now a manifest symmetry of our Lagrangisn. We will consider just a single heavy 
flavor in the following. 

We now rewrite the terms of eq.(5) in a manifestly heavy spin symmetric form, 
letting Q + Q. and furtherrearranging T-matrices. Then, eq.(5) takes the form: 

LHL = ~&+‘8,,QV + $ (Qv;tli$Qv - QVY~$~FY~Q~ 

I-# 
-&p+8+“Q. + &,r,----- 

i I-$ 
2 TslLt+ ‘YSTY,~Q~ (8) 
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We have now brought the interaction to a form which can be factorized by introducing 
heavy static auxiliary fields, (B, B’). T o d o so we must introduce four independent 

fields, B (B5) are Of (O-) scalars, while B,, (Bj) are l- (l+) vectors. These form a 
minimal complete set of auxiliary fields needed to factorize eq.(8) in the HQ limit. 
Eq.(8) then becomes: 

GIL = i&+‘a,,Qv + gQ”tLiB’, + igQey5$iB5,’ 

+!?Q”7, 
1-j y$iP: - igZJv7py75@ie + h.c. 

-2A’(B’:B:i + B’,Bi”) + 2A2(FyBi”y,, + P?Bi,,) (9) 

Upon integrating out the B fields in eq.(9) we reproduce eq.(8). (Note that the B 

fields do not yet have canonical dimension of heavy meson fields; see Appendix A). 

Eq(9) is a heavy-spin symmetric form. We can assemble the auxiliary fields into 
complex 4 multiplets under O(4) = SU(2) h x su(2),, where su(2)h (su(2)1) is the 
little group of rotations on Qy ($ and gluons) which preserves up. One heavy spin 4 
multiplet consists of the Of scalar together with the abnormal parity (If) vector as 
(B, B5”) (the four-velocity label “, and isospin i indices are understood): 

B’ = (iy5B +7,B5“) L3’ = (i75B + 7,,B5”) (10) 

The other 4 multiplet consists of the usual O- scalar and a l- vector (B5, BP): 

B = (i7”B5 +7&B“) B = (ir5Bs + 7,,Bp) (11) 

Under heavy spin Q(4) = su(2)h x SU(2) I rotations the (B, B5fi) mix analogously 
to (B’, BP). Note that q,BJ‘ = 0 always. We have introduced the cabgraphic U and 
5’ with the explicit projection factors. Falk has previously written similar effective 
“superflelds” for excited mesons in model independent analyses; he includes an extra 
factor of 75 (relative to us) in his writing of effective fields for the (O+, I+) multiplet 
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in a model independent approsch (121; for us the field g has overall odd parity while 
B is even. 

The factorized heavy-light interaction Lagrangian then takes the compact form: 

GfL = ~N’%Qv + gQ, (-iFy5 -+I?) $i + kc. 

+A2 p@B, + n(n?)] (12) 

Notice that the combination -iy5& + 13’ is coupled. We emphasize that eq.(12) is 
exactly equivalent to the full four-fermion theory in the heavy quark symmetric and 
leading large-N limit eq.(4). The theory forces a parity doubling of the heavy mesons 
upon us because the chiral symmmetry is controlled dynamically by g. For weak g 
the linear chiral invariance is realized and the theory must contain parity doubled 
meson states. Heavy spin symmetry organizes the parity partners into heavy spin 
4-multiplets. The effect of chiral symmetry breaking on the spectrum can now be 
investigated by solving the theory and choosing the broken phase. 

See Appendix A(iii) for a discussion of normalization conventions. 

III. J?ull Effective Lagrangian 

We now proceed to “solve” the theory. The full effective Lagrangisn for the 
heavy mesons is derived by integrating out the heavy and light quarks in eq.(12) 
over momentum scales p < Ic < A, keeping the leading induced terms. Details 
of the explicit calculations are given in Appendix A. We begin the discussion with 
the use of the linearly realized chiral symmetry form, C = i(u + ia. r), and we 
derive the nonlinear realization subsequently below. The loop integrations result in 
an unrenormalized effective-Lagrangian. By performing a conventional wave-function 
renormalization and several field redefinitions we arrive at the full effective action valid 
to 0(11/A)‘: 
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-: [Tr(Bixq - Tr(FL%‘) + Tr(&r d) + l-q& TLY)] 

+$ [Tr(fi(iT2 + ?r2)B) + Tr(qF2 + ?f2)EY)] 

+-$ Tr [&“(a 
* 

7r. T)z3 - F7”(+T. r)S - F75(qu,a - z375(@)4 

+ A [Tr@) + Tr(F@)] 03) 

The light quark PCAC masses are contained in the “shifted” o field, 5 = o + 
2m,fl/g. The parameters of this Lagrangian are determined as: 

gr = &; v & i 
h = 2g2&A k = 2gfdz 

, & 

A = & (A’ - &(A + /1)/2x) 

where: 

Zr = g(A-/J); 22 = $$ [ln(A2/p2)] 

The parameters defined above arise from the loop calculations of Fig.( 1) ana Fig.(2) 
and are presented in Appendix A. The gT, h, and k, are dimensionless. They are 
determined in principle by fitting the observables of the model as in Section IV. We 
will generally take /J to be of order the light quark constituent mass, and it will 
henceforth be neglected in the expression for 21. Note that terms like Er5(ogu)B 
are potentially induced, but they are sublesding ss N 0(1/ln(A/p)), relative to the 
terms we keep. 

We now identify the chirsl representations of the composite fields in the effec- 
tive theory. This can easily be done by returning to eq.(12) and examining which 
heavy meson linear combinations couple to $,L and $n. If we define the following 
combinations: 

B1= &(B-iB) &=h(&?+iS) (16) 
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inspection of eq.(l2) reveals that 01 (a ) 2 couples to $R = (1 + 75)$/2 (@L = (1 - 

r5)$/2). Thus, the chiral representation of f31 (Bz) must be (0, i) (( i,O)). Writing 
in terms of C = i(u + ia. r) (we will henceforth ignore the m,, contribution which 
can easily be restored by shifting u -+ CT), the effective Lagrangian becomes: 

LL.4 = -i;Tr(Blv~ a3,) - +k(B*v * a&) 

-$ [Tr(B;C’B2,) + Tr(im3*)] 

+(A+:C%) [T@&)+2(~&)] 

+$ [~(f3;r5(~~+)~2) - -(zr;r5(?~)&)] 
r 

Inspection of the effective Lagrangian (as well as eq.(12)) confirms that it is manifestly 
invariant under SU(2) x SU(2) provided the fields transform as: 

Bl = (0, ;, a2 = ($, 0) c = (;, ;, 

We now see that indeed, eqs.(l3, 17) have a structure analogous to that of a parity 
doubled nucleon theory, with B N (n,p),++i, the normal even parity nucleon doublet, 
and B’ - (n,p)p=-i the odd parity doubling partner. We give a brief synopsis of such 
a system in Appendix B(iii). The essential results are that the axial vector current 
couples only through the perturbative k, term and describes transitions between 
parity partners, and the parity degeneracy will be lifted by (c). 

Note that eqs.(l3, 17) describe the heavy meson dynamics in either a broken or 
an unbroken phase, i.e., it is simply a linear o-model form. In the spontaneously 
broken phase of the heavy meson theory we can pass to the the nonlinear realization 
by replacing C with a unitary matrix field which is a function of angular pion fields, 
and o is now decoupled. Thus, the nonlinear realization is: 

C = if- exp(i?r . r/f,) 2Clf* = t2 
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We can pass to the current form by performing the chiral field redefinitions: 

81 * {‘Bl B2 - St32 (20) 

We then have the Lagrangian: 

LLH = -; Tr(&v . (ii? + JL)B,) - $r(&” . (ia + JR)&) 

-+ [Tr(5B2) + a&B,) + kc.] 

+A, [n(i7;ai) + T@&)] 

-i$ [Tr(K757pdpBz)+ Tr(.U2757,,d’Br)] (21) 

where: 

A?= (A+$f:) 

and the chiral currents are: 

(22) 

&L = @,t+ &R = i<‘$t -4 = ;(&.R - $7;~) V/I = &,R + z,,L) 

(23) 
As usual the 3~ are matrices acting on the isospia indices of meson fields. The msss 
matrix of the chirally redefined heavy mesons is at this stage non-diagonal. We should 
mention that if an extra y5 were included in the definition of the parity partner, then 
the axial current components of the .7;,~ and g,,R terms would carry y5 factors, while 
no y5 would occur in the Ic, term. 

Note that the fields B1 and B2 are of mixed parity. The mass matrix can readily 
be diagonal&d now that the Lagrangian is written in .the current form: 

f3=&(&+82) L?=$(BI-B~) (24) 

with eigenvalues 2A, - gf,/2 and 2A, + gfr/2 respectively (recall that our normal- 
ization conventions imply the physical mass shift is bM if the Lagrangian contains 
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$M(trBB); see Appendix A). The mass eigenfields are nontrivial functionals of the 
pions through the absorbed <, [t factors as in eq.(20). The Lagrangian now becomes: 

LLH = +k(&J~ (ia + V)ii) - ; Tr(&. (ia + Y)B) 

+(A.-y+G3+(Ar++pr~~ 

-; T$(v . A)@) - ; T&v. A)& 

(25) 

Note the appearance of the off-diagonal pionic transition terms of the form z((v.d)&. 
At this stage it can be seen that these terms are associated with a Goldberger-Treiman 
relation, by taking d,, = a,,~. r/f=, integrating by parts, and using the equations of 
motion. One finds that the H&T amplitude has a coupling strength gBBlr = gV, and 
this is seen to be given by AM/f*.’ 

We can decouple the heavier field @ to leading order in the mass gap g?f* by 
“integrating it out” (which amounts to setting it to zero in leading order). We can then 
perform the residual msss redefinition: 0 -+ exp(-iMv.z)B where M = 2&-g,f,/2 

to yield the final result: 

f-Lri = -~n~iv.(a+V)~-i~Tr~~5~~ (26) 

where we now discover that: 

gA = k = 2g fr Jz;l& (27) 

Our fit to the model yields gA = 0.32 (see eq.(38) and discussion). Eq.(26) is equiva- 
lent to the point of departure taken by ref.[6] in writing effective Lagrangians involving 

‘The coefficient of this term corresponds to h = 1 and k, = 9 in Falk’s notation [12]. Our 
conclusion is that k, = 9~ < h = 1, and following Falk’s analysis the chiral perturb&w contribution 
of these resonances, e.g., to f~,/f~, ia signScant. 
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simultaneous heavy symmetries and chiral symmetries. Use of this effective Lagragian 
is justified so long as q is small compared to the mass gap. We see that gA here arises 
from the perturbative k, term, which is subleading to unity in our expansion. 

In summary, the central observation of this analysis is that the underlying chirsl 
representations of the full HL meson theory is a parity doubled scheme. There are two 
general implications of such a scheme: (1) The maas gap between the parity partners 
arises from (u). Thus a Goldberger-Treiman relation refers, not to the overall mass 
of the B mesons N M, but rather to the msss splitting between the even and odd 
parity multiplets: 

AM = mvnfr, (28) 

Here gBs#. = gr is the BB’7r transition coupling constant and is the analogue of the 
gNN= in the nucleon system. We note that the light quark constituent mass is given 

by m, x grfi/2 so we expect AM x 600 MeV, however this must be obtained in 
principle from a fit of the model to all data (see section IV.(ii); unfortunately, without 
exceptional circumstances the width of this state is too large for direct observation.) 
(2) gA is not necessarily expected to be N 1, being given by a subleading perturbative 
contribution, kT, alone. This is essentially a consequence of parity doubling and 
contrasts the chiral quark model in which, gl = 1 is a leading term. The fit we 
present below in section IV(ii), which is crude, yields gA x 0.32. This result may be 
indicated in the &system where D’ + D + ?r gives gA < 0.7 [6, 111. 

IV. Other Observables: fe, and Isgur-Wii function 

(i) Heavy Meson Decay Constant, fs 

We presently compute the heavy meson decay constant fe. Consider the heavy- 
light axial current &rrr’Q. We can compute the renormalized matrix element: 

fi-’ J all e-iMvr (Bl&(~h,r5W lo).: f&ii& + . (29) 

As a consequence of the heavy quark spin symmetry, B5 and B: have identical decay 
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constants for the axial vector current, while B and B, have the same decay con- 
stants for the vector current. The B-meson must have a properly normalized kinetic 
term, which includes the finite renormalization effects, B -) @B. We adopt a 
conventional normalization in which we expect fB z 180 MeV. 

The amplitude on the lhs takes the form: 

igN - J*T~!xT~M -~+m*)(l-#)(i75~5+7u~~)~((le-p;Z-RZ)~ 
wz Pa)4 

= ,,?&v,,B5 [i\’ - $ + TV. p(~ - p) + &ZA - a2 ln(A*/$) + ~((v . p)z)] 

(30)’ 

We see that the integral involved here is identical to Ii of eqs.(60, 62), and thus the 
equations of motion can be used for the B5 fields. Upon use of the equation of motion, 
shifting v. p + 2A + = 2h1/Zt - A/?T + . . . a large cancellation is seen to occur on 
the rhs of eq.(30) leaving: 

- 16&vP5 [27rA3/Z1] = ;v#B’ [nz/fl (31) 

We thus obtain: 

(32) 

For example, let g2N/4r2 = 1 and use fe = 180 MeV, MB = 5 GeV as input 
parameters, to find A = 1.35 GeV for No = 3. Remarkably, our result is insensitive 
to the light quark masses. 

fB is a measure of the wave-function of the meson at the origin in a nonrelativistic 
potential model. We can compute the wave-function in principle in our model by 
point-splitting the current in eq.(29): 

6-l J&z e-iMv.z (Bla(z - ~/2)#7~& + 42) IO) = N*(c) (33) 



-18- FERMILAB-P&93/059-T 

where Af is a normalization factor. This essentially replac: ne momentum space cut- 
off procedure by a point-split regulator, and A N l/e. Y-2 wave-funcilon is singular 
at the origin, and is not normalizable without a spatial cut-off of the normalization 
integral at l/A (our theory makes no senSe at shorter distances than this). Thus the 
wave-function is at the origin is given effectively by: 

IS(O)] - A’/& N (A)3’2. 

This implies that the result for fs is insensitive to infrared parameters such ss the 
light quark masses in our model, and indeed we find fB,. = fe,+. This is a defect of the 
model, but it is an expected result of an extremely relativistic, potential dominated 
system. In this sense, QCD lies somewhere between this extreme result and that of 
a nonrelativistic potential model. 

(ii) Fitting the model to data: 

While the model we have presented is not likely to be quantitatively successful, 
we can attempt a fit to observables, and predict some features of the HL meson 
system. We use as independent inputs fn = 95 MeV, and fs = 180 MeV for MB = 5 

GeV. The latter implies A = 1.35 GeV as discussed in the previous subsection. We 
see, owing to the smallness of the ratio f,'/A' = (6 - 1)/g2, that n: = g2N/4rrz is 
very close to unity. In defining Zz we cut-off the renormalization group flow at an 
infrared scale p N m, taken as the approximate constituent light quark mass. Then, 
to obtain Zz = $Kln(A’/mz), we self-consistently solve for the constituent quark 
mass m, = igf./Jm. This yields: 

g2N - = 1.065; 
4x2 

g = 3.75 A = 1.35 GeV z, = 1.11 m, = 169 MeV 

(35) 
m, is about a factor of two too small. We can moreover use the pion mass, mrr to 
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extract the light quark PCAC masses: 

m:f,2 = 4m, + md)fi w = ;;$ = 0.25 (Gel’)* 

hence, m, -I- rnd = 8.6 MeV, which is to be compared with the conventional N 15 
MeV, and is small. Also, m. x rn$(rn” + md)/mt R 107 MeV is small. 

The mass gap between the excited O+ and groundstate O- mesons is then: 

AM = g, fi x 2m, = 338 MeV (600 MeV] (37) 

The result in brackets obtains when the known constituent masses are inputted. The 
decay width F(O+ + O-1) is given by (AM/f.)2]kl]/8n. This is much too large for 
observation of these resonances when k, N AM N 600 MeV; with the lower estimate 
of AM N 338 MeV the width approaches 150 MeV, which is still too large. Hence, 
the direct observation of the parity partners of the groundstate is unlikely. Their 
effect in chiral perturbation theory is nontrivial [12]; conceiveably the decay width 
lT(D.(l+) + D$l-) •t K) - Ic~l is ph sse-spsce suppressed by the K-meson maSS 
and the l/M corrections to the D masses, which raise the l- and depress the l+ 
states. 

We obtain the axial coupling constant: 

= 0.32 (38) 

We might expect both AM and gA to be underestimated in this approximation, as 
are the light sector observables, owing largely to the short-distance singularity of our 
wave-function. 

ga can be in principle extracted from the decay D’+ + Do + 1~+, though it is un- 
measured to date. This decay partial width is given by ref.[6], and in our conventions 
it takes the form: 

(39) 
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where p, N 38.9 Mev. While this width is not yet measured directly, we can use the 
analysis of ref.[l9] to obtain an estimated result of F = 53.4 KeV from the measured 
branching ratio of (D’ + Dy)/(D’ * Dr) and a potential model calculation of 
D’ + Dy. Combining these results we find gA = 0.56, which is compatible with 
the parity doubled interpretation, but is also not far from the naive g,, N gi N 0.8 
from the chiral quark model (note that we derive the chiral light-quark model here 
with gi = 1, thus our prediction of gA N 0.3 represents a significant suppression). 
Amundson etal. [ll] give tne current experimental limit of gA < 0.7 consistent with 
this result. Thus, our model indicates that 9A is suppressed and smaller than unity, 
giving the physical underlying rationale, though the situation is arguably not decisive. 

Note that Z, = aA/ N 2.12 GeV and Zs N 1.1. Hence, 2A = 3h/n cz 1.3 GeV. 
Our model seems to suffer from generating a value of A that is slightly large. This 
implies E = 4Z,A/Z, x 1.2, suggesting that our approximation of truncating on the 
Zs(v . P)~/Z~ terms is probably unreliable (Appendix A). 

The binding energy is determined in the model. Neglecting the light quark PCAC 
masses we have in the infinite mass HQ limit: 

MD.S = &,t, + 6m; 6m=2.4-mc+~ 
r 

where m, is the constituent light quark mass (the latter term is small, but non- 
negligible). For the fit we have presented we find h, = 2g2fiA/Zr = 17.9, and 
g, = g/a = 3.55. If we use a conventional charm (b-) quark maas of 1.2 - 1.8 
GeV, (4.5-5.0 GeV) this overestimates: Mo M 2.4-3.0 GeV, ( MB = 5.8-6.3 GeV). 
These results should be corrected for finite mass of the heavy quark. The corrected 
boundstate msss is: 

MB=,/- (41) 

This yields a result Mn M 2.0 - 2.75 GeV, ( MB = 5.65 - 6.3 GeV). This illustrates 
the problem of A being too large in the model. 

The effect of the explicit SU(3) breaking light quark masses is calculable, upon 
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restoring these terms in eq.(13) as contained in the shifted 5 field. Using the full 
constituent quark msas m, = g,C/2 we have: 

hp - MEJ~~ = -(m, - m8) + (rnz - m:) 

= -(m, - m&) + (2.1 x 10e3 (MeV)-‘)(mf - m:) (42) 

For the B.-B0 msss difference we take m, = 450 MeV (the strange quark con- 
stituent mass) and rn8 = 300 MeV to obtain MB, - Mscu,dl = 86.25 MeV. (If we 
use the predicted rn6 = 169 MeV and n, = 276 MeV we obtain 52.5 MeV). This 
compares to GZJ 100 MeV experimentally. It shows, however, that the model must 
include the effects of the u2 term in computing these differences. The MD+ - Moe = 
[(+0.26), (-0.3)](md - m,) = (2.6, -3) MeV (using standard constituent masses in 
the tirst entires, and the model’s derived constituent masses in the second). This is 
subject to electromagnetic corrections, estimated to be +2.0 MeV. 

We have seen that fs is insensitive to the light quark masses in this model. Thus, 
we obtain ffl,/f&,d = 1, while lattice results yield N 1.09 [20]. This result owes to the 
unrealistic non-normalizeable singuiarity of the wave-function at the origin. This is 
consistent with the behavior of the binding energy for small constituent quark mass, 
in which increasing the constituent mass actually decreases the meson mass (for large 
constituent mass the u* terms contribute to increase the meson mass). 

(iii) Isgur- Wise Fhction 

The analysis of the Isgu-Wise function in the model involves a careful treatment 
of the cut-off procedure. We select a preferred cutoff by demanding the validity of 
reparametrization invariance (or the residual mass symmetry) [15-171. 

We consider the transition amplitude in 4-velocity defined by the matrix element 



-22- FERMILAB-Pub-93/059-T 

(&I QFQy, I&,), where F is an arbitrary Dirac matrix. 

I = ZJ d4k -or 
M (2n)4 

This involves the integral: 

I, = J &k k, 1 1 -- 
(2*)4(kZ-m2)v.kv’.k 

= A. (u“ + v”‘) (44) 

where the latter term follows by symmetry, since A can only depend upon ZI. V’ and 
is even under v * v’. Now multiply by ZJ + v’: 

2A.(l+v.v’) = J$$J;$“;;-&-& 

J d4k 2 = 
(2nr(k2 -ml,& 

= &(A-2m) 

Therefore: 

A= 
16n(l:~~~)(~-~~) 

(45) 

(46) 

and we conclude that the Isgur-Wise function is given by: 

(47) 

This should be trueif the momentum space integral is Lorentz-invariant and finite. 
Computing the integral directly, without recourse to the symmetry argument one can 
obtain: 

;tc v.d)= 
/ 

r/2 CO&J@ 

0 d0(I+2v.tfcosBsin0)3/2 (48) 

which agrees with the previous result. 
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This result contains a t-channel pole at t = (Mr + Mr)*, where Mr (Ms) is the 
incoming (outgoing) heavy meson msss. One might ask if this is consistent with the 
slope constraint of de Rafael and Taron [IS] arising from t-channel unitarity? Our 
slope, E’(O) = -1 is inconsistent with the their lower bound of -l/2 arising from a 
t-channel branch-cut at threshold. Grinstein and Mende (IS] have pointed out that 
the de Raphael-Taron constraint is weakened by effects of resonance poles, as we 
are presently observing. However, the r-channel unitarity constraint is sn interesting 
issue in HQET. In an HQET such as we have studied, the anti-particle has been 
discarded at the outset, and with it goes crossing symmetry and t&channel unitarity. 
Moreover, our cut<ff theory would seem to require the bound of Q* < A* without a 
unitarization. Since Q* = 2M*( 1 - u . v’), we see that this bound corresponds to the 
limit v . U’ + 1 for M -) 00. Nevertheless we can compute the t~hannel behavior 
by incorporating the heavy anti-quarks and computing the large-N bubble sum with 
the full interaction. While we do not present this analysis here, we find, perhaps not 
surprisingly, a Nambu-Jona-Lasinio pole at Mr + Ma is generated, and our slope is 
consistent with the existence of this pole. 

The previous result of eq.(47) is, however, sensitive to the definition of the cut-off 
procedure, which we have taken to be a Lorentz-invariant Euclidean momentum space 
cut-off. Different results follow if the energy integrals are first performed by residues, 
and then a 3-momentum cut-ff procedure is used. To see thii let us compute directly 
with a 3-momentum cut-off Let d = (1,6) and u = (us,C). First we perform the 
energy integral by closing dke below to pick up the single poie: 

A(l+v.v’) = /(2TJ* d4k (~;~~~;;“) (,,‘k‘.J (k> 

This result, using a non-Lorentz invariant regularization procedure, differs signifi- 
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cantly from eq.(47) in which the Lore&z invariant cut+ff was used. 

There is however an implicit gauge invariance in heavy quark effective theories 
associated with the “residual mass ambiguity.” One is free to add a term xgVQy to the 
effective Lagrangian of eq.( 12). x should be viewed as a gauge potential in the sense 
that if we redefine the heavy quark mass M -+ M+/.J, and thus Q + exp(ipu.z)Q we 
can compensate this gauge transformation by shifting x -+ x + p. Hence iv. 8 + x is a 
covariant derivative. This is essentially the demand that the global zero of energy of 
a classical theory be arbitrary. This symmetry and its implications will be discussed 
elsewhere, however we can see immediate implications for our present problem. 

We can observe that the non-Lorentz invariant regularization procedure violates 
the x symmetry. Consider the integral involved in our calculation of the Isgur-Wise 
function: 4 

I= &4[(k+p)2-~2](u.k+4 I (50) 

We have chosen to route the external momentum p through the light fermion line. 
The x symmetry applies to the external heavy mesons and requires that the following 
shift in ‘v . p and Jo be a symmetry of the integral: 

v.p-*v*p+x; fi+/J+x (51) 

This is readily seen to be a symmetry in the case of the momentum p routed through 
the heavy fermion line. 

In the present example we can implement this by shifting p 3 p + VX. Therefore 
the shift in the integral is: 

-2v.k 
[(k +p)2 - TTI~]~(u. k + fi) - [(k +PP)~ - 77&v. k + /i)2 (52) 

The symmetry condition is &I = 0, and is equivalent to demanding that the integral 
generates no nontrivial surface term upon shifting k * k + a. For simplicity we 
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consider the surface term: 

’ = / $-4 ((@ --$$, . k) - (k2 - m&v. k)2 
> 

(53) 

If we evaluate S using the covariant cut-off we find that S = 0. 

Now consider computing S by first performing dko by residues, then the residual 
3-momentum integration with a cut-off. We find: 

J d4k . 
(27~)~ (k2 - iz2;(v. k) = / &(k2 --t~t~)~ 

(54) 

Consider now 

/ ($4 (k2 - n&v. k)2 = 
$[sinBdB/- k2dk 

o (k2 + VI~)~/~(V,, - I@(k)cose) 

(55) 

where u(k) = k/m and vp = (us,G), and thus t$ - t? = 1. Notice that if 
either m - 0 or if v’ * 0 then S --+ 0. Let us expand in m2, using the latter results, 
to find for S: 

s= 41 - 4 lrn (1 :;;s,2 4n2 

Here we introduce a four-vector q, = (l,@ which is the direction of the dko line 
integration. 

This latter result implies that the x symmetry is broken when the k,, line integral is 
not parallel to ufi. For the computation of the Isgur-6’is.e function where r~ # u’ then 
the x symmetry can never be present in the residue computation. However, utilizing 
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the Lorentz invariant cut-off we see that the x symmetry can be maintained. The 
x symmetry therefore requires that we reject the result of eq.(49) in favor of eq.(47) 
which is consistent with the absence of momentum space surface terms, and the 
attendant symmetry. 

VI. Conclusions 

We have presented perhaps the simplest, solvable, strongly coupled toy field- 
theoretic model in which both heavy quark and chiral symmetries are present at 
the fundamental quark level, and the dynamics of chiral symmetry breaking is made 
explicit. We find that the chiral representations of the heavy mesons are parity 
doubled. This has a well defined meaning in the toy model because we can tune 
the coupling constant to restore the spontaneously broken chiral symmetry. In the 
symmetry limit the groundstate is a degenerate system of (O-, l-) and (O+, l+) heavy 
mesons. When chiral symmetry is broken the degeneracy is lifted, elevating the 
(O+, I+) and depressing the (O-, l-) heavy meson multiplets. We obtain the full 
chiral Lagrangian containing the parity doubled composite HL mesons together with 
the composite pions. The mass gap between the multiplets is given by gfi, and 
the analogue of the Goldberger-Treiman relation of the system reflects this, geBsr = 

AM/f=. We are able in the broken phase to pass to a nonlinearly realized chira.l 
symmetry, and to write a purely derivatively coupled pion effective Lagrangian. We 
can then decouple the heavier parity doubling field to arrive at the conventional low 
energy effective chiral Lagrangian for L3. 

We believe that the general phenomenon of the parity doubled chiral representa- 
tions of heavy mesons is inherent to QCD itself. We emphasize at the outset that 
this toy model is only intended to convey the schematics of QCD chiral dynamics in 
heavy-light mesons. The model is designed to imitate these dynamical features of 
&CD, rather than provide a detailed phenomenological fit. Nonetheless, the simplest 
fit seems to agree within a factor of two to the expected values of physical quantities, 
and is predictive. While we would be inclined to trust the result gA = 0.32 only to 
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within a factor of 2, the model suggests that ga is smaller than might be naively 
expected on the basis of the simple constituent quark model in which. The direct 
observation of the parity partners of the groundstate mesons is unlikely owing to 
their large widths. It would be interesting to extend these results to the heavy quark 
containing baryons where similar conclusions must hold. 

Our analysis achieves the basic systematics of chiral symmetry in these systems 
where we might expect potential models to fail. The chiral symmetry limit is relativis- 
tic, and the chiral symmetry breaking is a dynamical rearrangement of the vacuum, 
two features which would be hard to realize in any potential model treatment. One 
must be careful in estimating the value of gA in a naive potential model unless the mix- 
ing with the parity doubled states is under control. As we have observed in eq.(21), 
the gA term is a transition matrix element between the O+ and O- states in the mixed 
parity basis appearing there. In a basis in which the gA term is diagonal, the mass 
matrix must be correspondingly diagonal. There remains the transition amplitude 
term between the parity partners (some authors include an extra factor of y5 in the 
odd parity fields, and this transition term can then be mistaken for the gA term in a 
mixed parity basis). In our model, the constituent quarks are found to have gi = 1, 
and yet the value of gA obtained in the Lagrangian of ref.[6] is suppressed to N 0.32. 
This is a subtlety of parity doubling which must be treated with some care. ‘The res- 
onances may have important contributions in chiral perturbation theory to quantities 
such as fD,/fD and flavor ratios of Isgur-Wise functions [12] (in the notation of Falk, 
h = 1 and gA = g, and thus h2 >> g* in our model, so the resonance contributions 
are significant). 

We have studied the physical predictions of this system. The wave-function of 
the theory is too singular at the origin to represent a realistic QCD wave-function. 
This is a consequence of the strong coupling of the point-like four-fermion interaction 
term. While it is a defect of the model, it indicates the trend in a theory in which the 
potential term is dominating the dynamics. For example, we obtain the unrealistic 
fs./fs,,d = 1, because the singular shortdistance behavior of the wave-function 
becomes insensitive to the infra-red parameters of the theory. This contrasts lattice 
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results, indicating jB,/fB”,d = 1.1 [20]. However, a weakly coupled potential model 
would give the larger result d&w 1.2 (21). 

In our analysis we 6x A N 1.35 GeV from f~ and examine the relationship with 
the cut-off wave-function at the origin. Inputting also fX Exes g, and marginal results 
(within a factor of 2) obtain for AM, gA and the light quark sector. A defect, related 
to the short-distance singularity of the wave-function, is the fact that for small light 
quark constituent mass, the groundstate maSS is actually depressed as the light quark 
constituent mass is increased from small constituent mass. Nonetheless, the common 
h, term is sufficiently large for m, N 300 MeV that a reasonable result for Ma. -MB,,~ 
emerges from the fit. 

Of further interest is the Isgur-Wise function, which is associated with an am- 
biguous linearly divergent integral in the present scheme. The ambiguity is resolved 
by invoking “residual mass invariance” [15,16], or equivalently, “reparameterization 
invariance,” and enforcing an associated Ward identity (171. The simple Isgur-Wise 
function corresponds to a t+hannel threshold pole at (Ml i Mz)2. This pole is beyond 
the cut-off scale of our model, but it may be indicative of a Nambu-Jona-Lssinio re- 
sult when the Qg system is studied. In fact, the fundamental issues raised by de 
Rafael and Taron can in principle be explored in this scheme [18]. We will defer this 
discussion to another place. 

We believe there remains much to do in dynamical analyses of this kind for heavy- 
light systems and their interactions. Our model has inherent shortcomings. While the 
agreement of this crude model with observation is marginal at best, it suggests that 
improvements, such as a Pagels-Stokar approximation, Holdom’s approach (22, 231, 
or “Russian sum-rule” methods [24], will lead to more reliable estimates of crucial 
heavy meson observables. The singular behavior of the wave-function is not expected 
in a more realistic scheme. Replacing our pure s-wave dynamics by QCD ladder 
approximation is clearly of some interest. For example, pinning down a prediction 
of gA or the Isgur-Wise function from such models would be quite interesting. The 
full range of phenomenological applications of generalized models would seem to be 
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an interesting direction for future research. This toy scheme is a first step in that 
direction and highlights the challenges and advantages for more elaborate approaches. 
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Appendix A: Fermion Loop Approximation 

(i) Zero momentum pions 

Let us now integrate out the heavy and light fermion fields in eq.(12) to pro- 
duce an effective Lagrangian for B and B’. This can be viewed as a block-pin 
renormalization of the theory of eq.(12) defined at the scale p = A, to a new scale 
p < A, and is analogous to the treatment of the light quark dynamics in Appendix 
B. We begin in the approximation of treating the u and II fields as zer*momentum 
(constant in spacetime) backgrounds (small momentum ?r amplitudes are considered 
subsequently). We note that the fermion propagators take the form: 

i 
sw(k) = x SLq(k) = i # +m,+gC5 

k2 - fY (57) 

where: 

Cl2 = (mp + gu/2)2 -t g2n2/4; 3 = TaTa. C5 = $7 + i+ysn .r (58) 

We obtain from the diagram of Fig.(l) ( recall that the 23 contain (1 + #)/2 projection 
factors): 

isBB = -g2N J 
Tt (-iz%/” + B) 

$ -j +m,+gF 
(k-p)2-02 

= -g2NTr [(-iB’y5+@11(-iy5L? +a)] (59) 

and: 
(#-+)+m,+gC” 

(k-p)2-R2 (6’3 

We carry out a “block-spin” integration over heavy and light quark modes between 
the scales p and A in Euclidean momentum space. The integrals are evaluated with 
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a Euclidean 4-momentum cut-E 

/ 

&k 
m((k-p)&Y)~.k =&A-P)+ &J. P [ww)] 

/ 
Crk 

(2r)4((k -p;z - 02) = 
-- [A2 - /A2 - &ln(A2/$)] 

lth 

I 
d’k 

m(k2 -$), . k = 
-if& [A’ - fi2 - R21n(A2/p2)] 

I 
d4k Ic, 

(2n)4 (k2 - Q2)*v . k 
= is [1n(A2/~*)] (‘51) 

Then Tr(Zl) can be written as (note Tr(8y5f3) = TY(dB) = 0, etc.): 

ig2N Tr(Bl,B) 

= -; Tr(zB)((v . p -!- gC-/2)(& + 42~~. p) + &(A + p)/?r - 2]Ql’&] 

ig2NT@(--i-y5)11(-iy5)B) 

= -; n(a@[(U . P - gz/2)(& f ‘i&U. p) + &(A + /J)/x - 21nl*&] 

ig2N[Tr(H(-iT5)IlB) + Tl(BZ,(-ir5)E)] 

= -; T@(, ?r. T/2)8 + i3(gS T/2)L3/](21 + 4&V. p) (62) 

where we let gZ = ga + 2m, and: 

Z, = $A - ,u); Z2 = $$ [1n(A2/p2)] (63) 

(note that the expression for 2, contains a factor of l/n, not I/X*). 

(ii) me gA tern 

Now consider small, but nonzero (u, X) momentum q,,, with q* z 0. We compute 
the effective Lagrangian, where the (a, r) are coupled through X5. We then have the 
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amplitude of Fig.(2): 

i&jr: = ;g3N J&-i 
n 

- (It + d ma + ix v5)(lt - B m (-ipy5 +@((k + q/2)* _ Q2)((k - q/‘42 - (-+. (k _ P)(-iy5B + ‘) 1 
(64) 

We are interested in the divergent terms of order q, since the q = 0 term has previously 
been computed: 

(_i~~5+~)[Y~81(~-i+.~~5)(_iy5~+B) 

(k12(k)*(v. k) 1 
= -;g3N-& 2 or [(-iF~‘+@[j,,j](u - ix. ry’)(-iy5u’ + u)] ln(A*/p*) 

= -~gZ2Tr[(-i~y5+B)[~.~](u -i*. ‘Y5)(-iy5@+B)] (65) 

Ifwe now expand the result of eq.(65) we observe some simplifications, e.g. ??j[$, $]a = 
0, and we obtain: 

= ig& Tr [z,j (in ry5)8 - Fd (i?r ‘y5)F + igy5d 00 + Biy5b uL3’] 

(66) 

This implies an operator in the effective Lagrangian of the form: 

= ;gz2 (7-r [By5y,7’f3 - F-y5yp7”Lr] l3v - Tr [7Fy5yJ3 + Eyr”y)$] Pu) 

(67) 

i 
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(iii) Normalization Conventions 

Consider a complex scalar field @ with the Lagrsngian: 

a,a+tws - (M + bM)2*+@ (68) 

Define a’ = mexp(iMv . z)@ (V destroys incoming momentum Mu,, + pr) and 
the Lagrsngian becomes to order l/M: 

iv,$+8W - bMV+iP’ (69) 

Now let & = $(l - j)iy5@’ and write in terms of traces (the field t3, with these 
conventions annihilates an incoming meson state IB)): 

- i; Tr(s,v . X3) + 6M; ‘I@&) (70) 

Thus when the Lagrangian is written in terms of 0 and E’ the normal sign conventions 
are those of the vector mesons, and opposite those. of scalars, i.e., the term in the 
Lagrangian +!#M Tr(?%) an increase in the B5 mass by an amount bM. A properly 
normalized kinetic term is -ii Tr(% . af3), with the overall minus sign and 4. 

One must take care in using HQET propagators, since the direction of momentum 
routing is lixed. Ultimately, the veracity of eq.(59) is best checked by computing 
with finite M, routing Mv,, through the Q propagator, and p through the light quark 
propagator, and then taking the M + 00 limit. Note that uI1 + -v,, and p, -, -p,, 

is a symmetry of the final expressions. Hence, L3, can be viewed as annihilating 
incoming particles, (@)), or creating outgoing anti-particles @Q). 

(iv) Structure of the Effective Lagmngian 

The heavy meson effective Lagrangian therefore takes the form: 

CLH = 
i 

-iiZ, Tr(i% .aB) - ii& Tr(pv . a@) + 222 Tr(B(v . t3)2B) + 222 T@‘(v . L3)2#) 
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-F [Tr(m3) - Tr(FS)] - igz, [Tr(Bh . a3) - Tr(EGv arr,] 
-F [qmr . TB) + Tr(E7r~ TB))] - igz2 [Tt(%?~ 7-u. as) + Tr(& .7-u. al?)] 

+F [Tk(a(c* + 2)f3) + Tr(P(2 + ayq 
+ (A* - Zt(A + /~)/2?r) [Tr(zS) + Tr(a,@)] 

++,n [&sq(iT T)r3 - @-y5q( ?r. T)L? - 7F-f5q(a)B - sy5q (up] (71) 

If we define: 

7 = [l + (‘i&/&)i2,. a]-l’* (72) 

then eq. (71) becomes more compactly: 

13LW = -i;z, Tr(luu am) - i;z, Tr(TFv . am) 

-9 [Tr(TEm) - TqTma’)] 

-+ [Tr(mr . T7B) + Tr(lBr . T.Trr,] 

++ [Tr(E(i?’ + ff2)B) + lyBi(C2 + 2)rq] 

+ (A2 - Zi(A + ~)/27r) [‘D(%) + T@g]) 

+$gTk [Ey5f(7r. r)B - Fy5#(7r. r)g - F-/5g(u)f3 - B~5+(u)B’] 

(73) 

To simplify the subsequent analysis we will assume that the subleading terms of order 
Zsv . p/Z1 are negligible, and take I = 1. Since these terms arise upon expanding 
the loop integrals in powers of l/A, we cannot self-consistently use the effective 
Lagrangian in this form unless this condition is at least approximately valid. We see 
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that other terms, such as the last one in eq.(73) which leads to gA, are leading in this 
order and describe various physical processes. Thus, we expect the amplitudes these 
terms describe to be small. If 422~. p/Z1 is large, then we must retain full analytic 
expressions for the loop integrals to fit the theory. 

We see that there is thus an induced kinetic term for the f3 and B’ fields with 
a common wave-function normalization. We absorb the factor Zt into the fields 
s.q I3 -+ a’a. Thus, with the field redefinition we then have the full effective 
Lagrangian: 

LLU = +r(BV~ x5) - +qFv . aBy 

-; [Tr(EfB) - n(m)] - 4 [Tr(Er . 78) + Tr(& . TL?)] 

+g pyiqz’ + 2)B) + Tr(F(zi* + 2)@)] 

+ A [@I@%) + T@‘)] 

+gp [z75a( 7r. r)B - Fy5$3 (a . T)L31 - R7”8 (u)B - B75g (+I 

(74) 

where: 
A = &(A* - Z,(A + /1)/2n) (75) 

The equation of motion in momentum space is u + p = 2A + . . . and 2A is the mass 
difference between the heavy meson and the heavy quark in the chiral symmetric 
phase: 

M,,=2A+MQ (76) 

Note that A > 0 (A < 0) for g2N/16rr2 < 1 (g2N/16a2 > 1). 
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Appendix B: Light Quark Dynamics 

(i) Deriving the Constituent Quark Model 

The effective Lagrangian in the light quark sector is: 

C = TCi? - m& - $iJ7p$&W~$ 

For concreteness we will take tj~ = (u, d), and in the limit that the quark mass matrix 
mv -+ 0, we have an exact chiral SU(2) x Su(2) invariant Lagrangian. This can be 
viewed as a single gluon exchange potential, where we assume a “gluon mass” A/d, 
and we have written the form of the effective Lagrangian at qs w A2, integrating out 
the massive gluon, and truncating on dim = 6 operators. 

Upon Fierz-rearrangment of the interaction Lagrangian, keeping only leading 
terms in l/No, eq.(77) takes the form: 

(78) 

where 11~ = (1 - 75)d~'/% lC'R = (1+75y5)@. H ere rA are Pauli matrices acting upon 
the isospin indices. 

For the present analysis we will truncate eq.(78) on the pure Nambu-Jona-Lasinio 
terms, since the (vector)* and (axial-vector)2 terms play no significant role in the chiral 
dynamics (they are associated with the formation of virtual p and Al vector mesons 
in the model). Hence we take: 

‘cr. = T(i? - mq)ti + $ (~,hLtLi??& + ~L+$)R~~+$L) (79) 

We can solve the light-quark dynamics in large-N in the usual way by writing an 
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equivalent effective Lagrangian of the form: 

L = T(i$ - m,)$J - &&$R - gq&‘$L - ~A2Tr(CtE) (80) 

where: 
C = $I2 + inaG (81) 

is an auxiliary field. We emphasize that at this stage C is a 2 x 2 complex field, so 
both u and z’ are complex, (otherwise, with u and ST real there would be unwanted 
contributions from (TC C) = (TCt C+> # 0 in integrating out C). 

Thus there is parity doubling at this stage, Im(o) is the fourth Goldstone boson 
associated with the U( 1) problem, and rm(?r“) is the O+ isotriplet. The restriction to 
real za will emerge dynamically at very low energies, since the induced Tr(C+CC+C) 
term will lift the degeneracy of the Re(rr) and Im(?r). We ultimately must add a 
det(C) + h.c. term to get rid of the Im(u) mode. 

We now integrate out the fermion fields on scales A2 > q2 > p*, keeping only the 
leading largeNo fermion loop contributions. We use the massless fermion propagator, 
treating C as a classical background field. Thus we arrive at an effective field theory 
at the scale p: 

c = g(i$ - mp)$ - $LctiR - d&+?bL 

+z*Tr(a,c’tYc) -V(C) (82) 

where: 

z2 = $$ln(A2/p2) 

V(C) = ;A2 - $(A2 - p2)] Tr(B+E) - $(A2 - /.t2)l-r(m,E + h.c.) 

+g4N ~ln(A2/~*)‘Tr(CtCCtC) (33) 
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We see that 2s -+ 0 as ~1 + A, reflecting the compositeness of the C field. Let us 
now renormabze the C field: 

c+ z*c J- (84) 

and we have the properly normalized effective Lagrangian at the scale ,U (this is proper 
normalization for real o and rr): 

I: = T;(i? - m&b - &WR - 3&h 
+n(a,c+aT) - P(C) 

where: 

V(C) = m~Tr(,Il+E) - wlY(m,C + kc.) 

+x Tr(C’CC’C) 

x = 16s2 
N ln(As/ps = j2 

w = s&2 -p2) 

635) 

The effective Lagrangian is seen to be a linear o-model at scales p < A. As the scale 
jr + 0 we see that the theory is trivial, since j + 0. However, these evolution results 
apply only to a scale b corresponding to a mass scale for the fermion. Nonzero m, 
will block the evolution into the far infrared, but we will neglect this presently. The 
theory will develop a chiral instability (a constituent quark mass) provided that rnz 
becomes tachyonic (negative) at some scale h. By tuning,the bare coupling constant 
g2 we can put the model in a symmetric phase, m2 > 0 -+ g2N/4?r2 < 1, or in a chiral 
symmetry breaking phase: m2 < 0 + g2N/4a2 > 1, where the critical bare coupling 
corresponds to rnz = 0 as p,-, + 0. 
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In the broken phase (ignoring mp) the u field develops a vacuum expectation value 
(u) = f* = JZlm,l/Ji;. w e see that the renormalized g field develops a vacuum 
expectation value given by: 

) ($1) = ($) (s-1) (87) 

In the broken phase we can then write u = f. + &, and the physical msss* of the 6 
is readily seen to be rnz = 2lm;l, while the fermion msss becomes ms = if*i. Thus, 
using eqs.(86) to relate g -* = X, we obtain the usual Nambu-Jona-Lssinio result: 
rn+ = 2mo. 

The solution to the theory can thus be written as a chiral quark model in which 
we have both constituent quarks described by $ and the mesons de&bed by C. In 
the broken phase it is useful to pass to a nonlinear u-model and write: 

c -* ~fzexp(i7r”r”/f.) W 

.c = $(,ci(i+ - mq)$ - mOqL exp(i~"~"/fi)$R - mO~Rexp(-i~a~a/fr)$L 

+ Tr(L$E+Plc) + w Tr(m,E + kc.) (89) 

where mu = !$fr is the constituent quark mass. Note, in our present normalization 
conventions that fr = 93 MeV. By a chiral redefinition of the fields, $R -+ (4s 
and $L -+ <trlr. we arrive at the Georgi-Manohar Lagrangian (their eq(2.9)) with 
gA = 1.0 (note that they fit GA/G” = (5/3)g A and obtain gA = 0.75, consistent with 
our largeN approximation). 

When the ~7 and rr fields are slowly varying in space, the light quark propagator 
of the chiral quark model is given by (in terms of the unrenormalized fields): 

( 1 1 
> 

-1 
SF = i $-m,-g-a-ig-ysn+r 

2 2 
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#+m,+gC5 = z 
i pz - cl2 ) 

(90) 
where we define: 

R2 = (m, + go/2)’ + g2r2/4; ?? = k”7r~ (91) 

C5=++i+y57r.T (92) 

In the broken phase we replace u = f. and C + $fiexp(irra70/f,). For future ease 
of writing we can often replace gZ:/2 = go/2 + m,& since it easy to restore the 
explicit chiral symmetry breaking quark msss terms. 

(ii) Schematic Discussion of a Parity Doubled Nucleon 

Consider a “nucleon” doublet N with the SLi(2), x su(2)R assignments NL N 
($, 0), NR N (0, i). Also, we introduce a partner, K, of opposite parity with sssign- 
ments KI, N (0, $), KR N (i, 0). A typical renormalizeable linear u-model effective 
matter Lagrangian (not including the C kinetic and potential terms) is then: 

.c = ~G?N+F~$K 

-MIFLCNR - MzFLC’KR- MOFLKR - M$VRKL + h.c. (93) 

Parity symmmetry requires MO = M& We consider the special csse Ml = Mz = M, 

which is the analogue of our model, but this is not generally required by symmetries. 
Now perform the redefinitions, NL + ~NL, KL -+ <tKL, NR -+ .$NR, KR -+ (KR. 

Thus, the Lagrangian becomes: 

L = x(ig +y +y5A)N+F(ig +y -r’d))K 

-MFN - MKK - M,,FK - MoEN + h.c. (94 

Upon diagonalizing, the mass eigenfields are just (N & K)/fi, with mass eigenvalues 
M f MO. We can decouple the heavier state by setting (N + K)/fi = 0, whence the 
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light effective Lagrangian for Q = (N - K)/fi is: 

1: = gCi?+V)Q-CM-Mo)&Q (95) 

We see that gA = 0. Hence, gA is not generally of order unity ss is the case of a 
non-parity doubled nucleon. (this is also a consequence of the special case Ml = M,; 

more generally gA = sin(M) where 0 is the mass mixing angle). With gA = 0 the 
only nontrivial Goldberger-Treiman relation refers to the pionic transition amplitude 
between the ground state, Q, and the parity partner, Q’ = (N + K)/fi. 
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